Implication of the spatial resolution of the conventional dose-volume histogram (DVH) analysis in the radiation therapy treatments.

Anil Pyakuryal 1,2,†, Damodar Pokhrel 2, S Jang 3, M Gopalakrishnan 2, V Sathiaseelan 2, and B Mittal 2,6

(1) University of Illinois at Chicago, Chicago, IL 60607, (2) Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, IL 60611, (3) Princeton Radiation Oncology, Jamesburg, NJ 08831, and (4) Northwestern University, Chicago, IL 60611.

Purpose: To assess the accuracy of IMRT plans using a novel approach of spatial-DVH (sDVH) analysis in the Histogram Analysis in Radiation Therapy (HART).

Background:
- History of HART:
 - An open source software system *(2008),
 - An efficient and accurate DVH analysis program,
 - Cumulative-DVH (cDVH) and sDVH analysis features,
- The cDVH analysis loses the spatial information of the dose-distribution such as “hot” and “cold” spots, in the evaluation of the advanced radiation therapy plans,
- A cDVH curve can be resolved into the components of spatial-DVHs (sDVHs; x-, y- and zDVHs respectively).

Materials and Methods:
- HART software was developed in MATLAB based codes.

Results and Discussions:

- Cumulative DVH (cDVH) simulation in HART:

Fig. 2 Figure demonstrates the cDVH analysis of the larynx (V200 = 0.24 ± 0.02) in an IMRT plan of a typical head and neck (HN) cancer patient.

- Space based DVH (xDVH) simulation along x-planes:

Fig. 3 The x-component of the cDVH analysis (xDVH) as shown in the Fig. 2 of the larynx (V200 = 0.26 ± 0.02) in the IMRT plan of the HN cancer patient.

- Space based DVH (yDVH) simulation along y-planes:

Fig. 4 The y-component of the cDVH analysis (yDVH) as shown in the Fig. 2 of the larynx (V200 = 0.27 ± 0.02) in the IMRT plan of the HN cancer patient.

- Space based DVH (zDVH) simulation along z-planes:

Fig. 5 The z-component of the cDVH analysis (zMVH) as shown in the Fig. 2 of the larynx (V200 = 0.26 ± 0.02) in the IMRT plan of the HN cancer patient.

- The sDVH analysis found the isotropic distribution of the low-density hot-spots (< 5% per unit slice) in 57 ±12% (N=10) and 93 ±2% (N=10) of the slices of the parotid glands and larynx respectively, however the high-density hot-spots were uniformly polarized in the space in the 90 ±8% (N=10) of the slices of the submandibular glands in the sequential IMRT boost (SqIB) treatment plans.

Conclusion:
- The sDVH analysis is the more precise and practical approach for the in-depth analysis of the radiation therapy treatment plans.
- In this study, the hot-spots estimated from the sDVH analyses, were consistent with the cDVH analyses at higher resolution (1 mm).
- Future work: To develop 4 dimensional space-time DVH analysis features compatible with various types of commercial TPSs.

Acknowledgement:
This work was partially supported by Northwestern Memorial Faculty Foundation (NMFF) and NIH-NIDCD grants.

References:

* http://www2.uic.edu/~apyaku1 †Corresponding author contact : apyaku1@uic.edu